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ABSTRACT 
 

 Engineered or hard-coded autonomous behaviors 
tend to be “brittle,” working for a narrow range of 
conditions but failing outside that range.  Trainable robots 
capable of learning and adapting to new environments and 
conditions have the potential for greater robustness and 
reusability.  Trainable robots would not be restricted to 
learning from their own experience, but could potentially 
integrate models or lessons learned by other similar robots 
operating in different conditions, thus achieving a 
“learning force multiplier”.  In this research we began an 
investigation of issues and methods in robot learning, 
from definition of the learning objective, training 
methods, learning algorithms, and integration of models 
or lessons from multiple training sessions.  Our objective 
in this initial research was not to develop new robot 
learning technologies, but to explore issues and 
approaches across all aspects of robot learning.  In this 
stage of the project, we focused on learning to see, 
specifically learning to discriminate between “Go” and 
“NoGo” terrain. 
 

1.  INTRODUCTION 
 
 At the present time, the vast majority, if not all, of the 
mobile ground robots in use by the military in the field 
are teleoperated.  Despite widespread research and 
development in university and government laboratories, 
autonomous and semi-autonomous robots have yet to gain 
field acceptance.  This is due in large part to concern that 
the systems would fail to perform correctly in the highly 
varied and unpredictable field environment, resulting in 
possible mission failure and/or safety risk. 
 
 Engineered solutions to autonomous driving 
behaviors tend to be “brittle.”  They may work in 
narrowly defined set of conditions, e.g., an office, a 
laboratory, or even lunar or Martian terrain, but fail and 
not recover when placed in the various terrestrial 
conditions.  
 
 Trainable robots, i.e., robots capable of learning the 
characteristics of new environments and adapting their 
behavior to accommodate those characteristics, would be 
an important step towards the development of robust and 
effective semi-autonomous systems.  A trainable robotic 

system can potentially learn not only from its own 
experience, but can assimilate the lessons from other 
similar systems, thus greatly increasing the domain of 
operation. 
 
 The objective of this research was to explore the 
spectrum of issues and technologies in a robot vision 
system capable of being trained to recognize the 
trafficability of widely varied terrain types and features, 
in unstructured outdoor conditions.   
 
 Learning for visual terrain recognition is an emerging 
area of robotics research.  Sebastian Thrun (2005, 1996), 
lead researcher on the Stanford team that won the 
DARPA Grand Challenge, has been a long time advocate 
of robot learning to produce robust, adaptable, and 
transferable robot behaviors.  Research in this area has 
been limited, and has not addressed robust, natural world 
conditions.  Work by Howard and Seraji (2001) and 
Howard et al. (2001) was focused on barren 
extraterrestrial terrain conditions, with the complexities of 
vegetation, man-made structures, and water.  Earlier work 
by Karlsen and Witus (2008; 2007; 2007) addressed 
terrestrial learning for terrain classification using local 
pixel properties, not large-scale structure, and supervised 
learning with either a priori terrain classification or 
trainer-assigned trafficability.  Angelova et al. (2007) 
describe a slip-prediction system, but which was tested 
against a set of distinctive a priori terrain types.   
 

2.  APPROACH 
 
 Our approach involved collecting training data in a 
robust and varied environment for subsequent 
investigation of component learning methods.   
  
 The first step was to define an approach to collect 
training data.  We decided that we wanted the robot to 
learn by observing human control behavior, i.e., from the 
actions that a human operator takes during exercises.  An 
unsupervised learning system will have vastly more 
opportunities to learn and more relevant experience than a 
supervised learning system that requires human 
intervention.  
 
 We realized that the training data had to be collected 
in a manner similar to the intended behavior of the robot 
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system.  In our concept, the robot would be given a 
sequence of waypoints, and be expected to drive from 
waypoint to waypoint as directly as possible while 
avoiding obstacles and rough terrain.  This defined our 
data collection approach. 
 
 The second step was to select a data collection 
platform.  For this purpose we instrumented an off-road 
vehicle (specifically, a tractor) with a differential GPS, 6 
degree of freedom inertial measurement unit (IMU), and a 
monochrome stereo camera system.  Data from the 
sensors were logged on an on-board computer.  The IMU 
data were logged at 20 Hz, the stereo camera frames were 
logged at 7.5 Hz, and the GPS data were logged at 1 Hz.  
The GPS unit has a long-run accuracy of one meter, as 
determined from a stationary antenna over a 24-hour 
period as satellites crossed the horizon.  It has an RMS 
sample-to-sample variation of approximately 10 cm.  The 
stereo camera system had a 60 degree by 40 degree field 
of view, 640 by 480 pixel resolution, and was mounted at 
63 inches elevation, pointing slightly down so that the 
angle from vertical to bottom row of the image was 57 
degrees.  On a flat surface, a point at the bottom of the 
image would be 53 inches in front of the camera.   
 
 In order to have value for training, the segments from 
waypoint to waypoint had to require turning to avoid 
obstacles and rough terrain.  We selected a sequence of 
waypoints from a 1-foot resolution aerial of the test site.  
The waypoints were selected to present a variety of 
terrain features and characteristics including fields, hills, 
ditches, ponds, streams, woods, isolated bushes and trees, 
roads, fallen logs, fences, trucks, and buildings.   
 
 The third step was to collect the data.  The data were 
collected in conditions of full summer daylight with 
partial, intermittent cloud cover. We collected data on 
three runs on different days, as shown in figure 1 (the 
aerial photograph had a slight warp relative to the GPS 
track of the data collection).  Each run lasted 
approximately 45 minutes, and collected 10 GB of data.  
At the present time, we have only analyzed the data 
collected in the run shown in figure 2. The waypoint 
segments in figure 2 are shown in alternating red and 
yellow.  In some cases, the waypoint segments overlap, in 
reverse direction.   
 

 

 
 The fourth step was to reduce the data for analysis.  
We reduced the data to 1 Hz.  For each one second 
interval we computed the mean and standard deviation of 
the IMU outputs, and selected stereo pairs at one second 
intervals.  The IMU outputs were the roll, pitch and yaw 
angles and angular rates, and the X, Y and Z accelerations 
and rates.  The GPS data were the latitude, longitude and 
elevation (at 0.25 cm precision, but only 10 cm accuracy).  
For each time step we computed the bearing from the 
current position to the upcoming waypoint. 
 
 We computed a disparity image from each stereo 
image pair.  At this point we had to decide what and how 
much engineered or hard-coded visual processing to 
perform prior to sending the input to the trainable soft-
computing engine, i.e., to select the representation of the 
visual input.  We did not want to prejudge what features 
were of interest; this is what we wanted the soft 
computing system to discover.  However, without some 
pre-processing the input would be too varied and the 
learning system would be confronted with too deep of a 
learning problem for the size of the data set. 
 
 We considered several biologically-inspired options:  
simple retino-topic disparity and luminance images, 
multi-resolution retino-topic disparity and luminance 
images, and multi-resolution oriented receptive field 
disparity and luminance images.  The engineering 
alternative was to compute a point cloud, i.e., elevation as 
a function of distance and heading relative to the forward 
direction.  For the initial investigation, we decided to use 
the point cloud perception of the terrain as the input to the 
learning system.   
 

Fig. 1:  Test Area And Routes 

Fig. 2:  Route 1 Waypoint Segments 
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 The significant roll of the terrain presented a 
challenge computing a useful elevation map (see figure 
3). At issue is the ground plane.  From a driving 
perspective, the local variation in elevation (vertical 
texture) and the elevation of features relative to the local 
ground plane at the feature are important.  Elevation 
relative to the ground plane of the vehicle at its location 
when it captures the image is irrelevant.  
 

 
 To resolve this issue, we computed the standard 
deviation of the elevation with distance and angle bins 
from the point cloud.  This is a measure of the variation in 
elevation over a grid cell in polar coordinates.  Using this 
representation required us to define the resolution of the 
representation, i.e., the size of the bins, and opens the 
door to multi-resolution representations.  We computed 
the elevation standard deviation maps at several coarse 
resolutions (3-by-3, 9-by-9, 12-by-12, and 15-by-15).  
This representation constituted feature vectors for 
training.  The extents of the maps were distances from 4 
to 24 feet from the vehicle, and from plus-30 to minus-30 
degrees from the current heading.  We also computed the 
luminance and luminance variation as functions of 
distance and heading, but did not use luminance data in 
this stage of the modeling and analysis. 
 
 We inferred trafficability of the upcoming terrain 
from the driver’s behavior relative to the upcoming 
waypoint.  We reasoned that if the vehicle was being 
driven more or less forward, the upcoming terrain must be 
trafficable.  If the bearing to the upcoming waypoint were 
more or less straight ahead, and the vehicle were turning 
to the right or left, then the upcoming terrain must be un-
trafficable.  If the vehicle were turning to the right and the 
upcoming waypoint were on the left (and vice-versa), 
then the upcoming terrain must be un-trafficable.  The 
classification matrix is shown in figure 4 (“X” denotes 
cases in which we could not infer trafficability of the 
upcoming terrain). 

 
 On this basis, we constructed a fuzzy logic model to 
compute the trafficability of the upcoming terrain from 
the driver behavior (see figure 5).  We set the deadband 
around zero yaw rate, defining “not turning,” as being one 
standard deviation of the yaw rate from several segments 
where vehicle was intended to be on a straight path, and 
the threshold for “definitely turning” at three times the 
standard deviation.  We set the deadband around zero for 
the waypoint to be considered straight ahead to be 10 
degrees or one sixth the width of the image, and the 
threshold for the waypoint to be definitely not straight 
ahead to be three times that. 
 
 The fifth step was to train an algorithm to predict the 
trafficability score (the output of the fuzzy logic model) 
from the local perceived terrain feature vector.  We began 
with a low-resolution 3-b-3 grid, producing a length 9 
feature vector.  We used a simple multi-linear regression 
model to establish a baseline prediction capability.  We 
have not yet completed analysis using decision tree and 
artificial neural network methods.  We have not yet 
examined higher resolution feature vectors, or feature 
vectors combining luminance and point cloud data. 

 
 The sixth and final step was to attempt to combine 
models from different segments.  The basic approach was 
to model the appearance of the training data for each 
segment.  Given some new observation, these models 
would be used to evaluate how much the observation 
resembles each of the training data sets, and thus weight 
the predictions of the various models.   We are still 
investigating formulations to distinguish the training data 
using statistical, decision tree, and artificial neural 

Fig. 3:  Pitch And Roll 
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Fig. 4:  Trafficability Classification Matrix 
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network methods. 
 

3.  RESULTS 
 
3.1  Data Collection 
 
 We found that it was virtually impossible to drive in 
rough off road conditions restricted only to visual input in 
the frontal 60 by 40 degrees.  Despite best intentions, we 
sometimes needed to look to the side and steeply down.  
We also found it difficult to drive without remembering 
what objects had been to the right or left, but which were 
now out of the frontal field of view.  We explored 
accommodating this by putting a lag of the perception 
vector to synchronize it with the driving behavior, but did 
not find any consistent lead-lag relationship.  We also 
observed that, on the rough terrain, ground steering was 
significant, and the driver often over-corrected.  These 
effects and behaviors were not functions of the forward 
visual perception, and added some amount of noise to the 
input to the fuzzy logic trafficability assessment model. 
 
3.2  Data Reduction 
 
 The GPS/IMU data reduction was relatively 
straightforward and uneventful.  We encountered multiple 
problems with the stereo camera data.  One problem was 
limited dynamic range.  The summer day scenes 
contained very bright illumination and dark shadows.  
Paths through the woods were entirely in shadow, others 
were mixed sun and shadow.  The camera’s automatic 
gain control attempted to compensate for this, but with 
limited dynamic range, portions of the images were often 
overexposed (white) and underexposed (black).  The 
automatic gain control for the right and left cameras were 
not identical.  Thus different portions of the right and left 
images would be overexposed and underexposed.  
Naturally this would degrade stereo disparity calculation 
and lead to erroneous matches.  Several examples of the 
luminance images are shown in figure 6. 
 

 
 We used a large kernel to compute the stereo 
disparity (40 pixels).  For the most part this produced 
good results and a dense, reduced resolution disparity 
image.  However, when the stereo images had 
significantly different over and under exposures, or when 
the images had large over and under exposed regions, the 
stereo disparity calculations produced garbage output.  
We did not come up with a robust and reliable approach 
to detect the problem conditions.  Instead we applied an 
adaptive median filter to smooth over disparity 
calculation errors.  This had the unavoidable side effect of 
blurring some shape details.  Figure 7 shows example 
disparity images corresponding to the luminance images 
in figure 6. 
 
3.3  Trafficability Inference 
 
 The model to infer trafficability from steering action 
(from the yaw rate, to be precise) and difference between 
current heading and bearing to the upcoming waypoint 
was largely consistent with after-the-fact human 
judgment.  We stepped through the imagery at 60 second 
intervals and displayed the computed trafficability.   In 
some cases, it was not possible to visually determine the 
direction to the waypoint accurately (resulting in errors 
during driving).  In some cases the steering actions were 
due to ground steering, or in response to ground steering, 
or due to steep pitch or roll angles, and not in response to 
upcoming terrain perception.  But the computed 
trafficability index was in general agreement with the 
subjective check.  
 

Fig. 6:  Example Scene Images
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3.4 Modeling Trafficability as a Function of 
Perception 
 
 We employed a two-stage approach to model 
trafficability inferred from driving action as a function of 
the stereo perception feature vector.  The first stage was 
local learning applied to individual waypoint segments to 
discover high-level appearance features that were useful 
to characterize trafficability, and their associated 
trafficability expectation.  The second stage was 
sequential learning which combined the high-level 
features and trafficability expectations from the individual 
waypoint segments. 
 
 In the local learning first stage, we assumed that there 
would be periods of time during which the terrain 
appearance and trafficability would not vary significantly, 
causing the data to consist of sub-segments with relatively 
similar appearance and trafficability.  We cut the segment 
into sub-segments whenever either (a) the Euclidean 
distance between the sequential feature vectors exceeded 
a threshold, or (b) the distance between the inferred 
trafficability exceeded a threshold.  For each sub-
segment, we computed the mean and standard deviation 
of the appearance vector and of the trafficability score.  
We then consolidated non-adjacent sub-segments if both 
the Euclidean distance between the mean feature vectors 
and the distance between the mean trafficability scores 
were below their respective thresholds, and iterated the 
consolidation until all consolidation was completed.  The 
mean appearance feature vectors and their associated 

trafficability expectation constituted the first pass at 
identifying the high-level features.  
 
 Once we identified the high-level features and their 
associated trafficability expectation for a given waypoint 
segment, we evaluated the predictability of the 
trafficability score from the appearance vector.  The 
purpose of this step was to identify those segments that 
were inherently unpredictable, so that they could be 
excluded from further use in the analysis.  For some 
segments, the variation in trafficability score was due to 
factors not represented in the terrain appearance vector.  
In some cases when the terrain had high slope, steering 
was to get to more level terrain.  In some cases, the driver 
could not see the location of the next waypoint, which 
caused erratic steering.  In some cases, the driver stayed 
on the gravel road rather than cut across the lawn at the 
corner, not because it was too rough but because it was 
someone’s lawn.  In some cases the steering action was in 
response to an object that was outside the field of view of 
the camera, too close and/or to the side.  In some cases, 
vehicle yaw was due to ground-steering effects.  All of 
these cases produced an inferred trafficability score that 
reflected factors other than the distribution of elevation of 
the upcoming terrain, and therefore should be excluded 
from use in the modeling and analysis. 
 
 For a given observation, i.e., an appearance vector, 
we forecast the trafficability score as the weighted 
average of the mean trafficability score for each sub-
segment.  The weighting factor was one divided by the 
Euclidean distance between the observation appearance 
vector and the mean appearance vector for the sub-
segment (plus a small epsilon to avoid the possibility of 
dividing by zero).  We eliminated from further use those 
segments in which the residual error was greater than the 
trafficability score threshold used in separating sub-
segments and consolidating the high-level feature vectors.  
 
 We did not have a prior expectation of the 
appropriate threshold values, and therefore conducted a 
parametric analysis varying the levels of the two 
thresholds.  Over all non-rejected segments and high-level 
features, we computed the proportion of variance in 
trafficability score accounted for by the high-level 
features (i.e., r-squared), the number of segments rejected, 
and the representation ratio (the number of high-level 
features relative to the number of segments accepted).  
Figures 8, 9 and 10 show the results of predicting the 
trafficability score from the high-level features associated 
with each segment.  Figure 8 shows the fraction of 
waypoint segments not rejected.  Figure 9 shows the 
average number of high-level features per waypoint 
segment.  Figure 10 shows the proportion of variance in 
trafficability score over all the non-rejected segments 
explained (r-squared) by the pool of high-level features. 

Fig. 7:  Example Disparity Images 
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 Requiring tight trafficability score tolerance 
increased the explanatory power (r-squared), decreased 
the number of features per segment, and decreased the 
fraction of segments rejected.  Allowing broadly defined 
feature appearance, reduced the explanatory power, 
decreased the feature ratio, and increased the fraction of 
segments rejected.   

 

 
 We next consolidated the high-level features across 
segments, using the same threshold values used to cut the 
segments into sub-segments, and to consolidated high-
level features within each segment.  The performance of 
the consolidated model is presented in figures 11 and 12.  
Figure 11 shows the mean number of high-level features 
per non-rejected waypoint segment.  Figure 12 shows the 
proportion of variance in trafficability score over all the 
non-rejected segments explained (r-squared) by the pool 
of high-level features. 
 Consolidation across segments had more dramatic 
effects on the proportion of variance explained by the 
model (r-squared) than on the number of high-level 
features per segment.  The effects of cross-segment 
consolidation were sensitive to the trafficability score 
distance threshold, but insensitive to the appearance 
distance threshold.   

Fig. 8:  Proportion of Waypoint Segments Not 
Rejected 
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Fig. 9:  Mean Number of High-level Features Per 
Segment Before Cross-Segment Consolidation

Fig. 10:  Trafficability Score R-squared  Before 
Cross-Segment Consolidation 
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 These results show that by setting the thresholds used 
in defining the high-level features, we can automatically 
extract high-level features for the set of route segments 
that are strongly correlated with trafficability score, 
provided we restrict to route segments that are self-
explanatory (i.e., internal to the route segment, 
trafficability score and the appearance vector are 
correlated).  When we choose a large distance threshold 
for separating the appearance of high level features and a 
small threshold for separating trafficability score, the 
trafficability score associated with the closest high level 
feature explains 78 percent of the variance in trafficability 
score over the self-explaining route segments.  The 

number of features per segment (18) is in the middle 
range.  The low threshold on trafficability distance tends 
to increase the number of features, but the large threshold 
on difference in appearance tends to reduce the number of 
features.  However, only 25 percent of the route segments 
met the conditions of being self-explanatory for these 
threshold settings. 
 

CONCLUSIONS 
 
 This paper reports on work in progress in the 
emerging and challenging area of developing trainable 
robots, and methods for training robots.  While we have 
not achieved significant technical success, we have 
learned several significant observations and lessons for 
future research. 
 
 For a robot to be able to learn from operator behavior 
in training situations, the basis for the operator’s decisions 
and the information available to the robot behavior need 
to be consistent.  If the operator is using wide field of 
view input (or head movement), that same field of view 
must be available to the robot.  If the operator is basing 
decisions on short term memory of the local surrounds, 
comparable short term memory representations must be 
built into the robot system.   If the operator sometimes 
bases driving decisions on the slope of the current terrain, 
or the angle with respect to the sun, then these data should 
be made available to the learning system.  If there are 
factors that influence the driver’s decisions that are not 
sensory inputs to the learning system, then the ability of 
the learning system to predict driver behavior will be 
limited and the possibility of learning spurious 
associations will be increased. 
 
 For a robot system to learn by imitation, the human 
operator must exhibit the desired behaviors during 
training runs.  If the human operator can not exhibit the 
behaviors desired of the robot, the conceptual robot 
behaviors should be re-evaluated. 
 
 In operations in natural illumination on rough terrain, 
there will be times when the sensor input is degraded, 
e.g., due to motion blur, solar glare, etc.  The robot 
systems need to be able to detect degraded input, and 
proceed based on prior assessments.  An important part of 
a robust robot system will be adaptive behaviors for 
conditions of degraded perception.  
 
 The learning and training system needs to be able to 
infer terrain trafficability or hazardousness from the 
operator behavior.  We can not afford to have the operator 
drive off a cliff or into a fire in order to demonstrate that 
these are undesirable actions.   
 
 The principles of simplicity and consistency apply to 
robot training just as they do for animal or human 
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Fig. 12:  Trafficability R-squared  After Cross-
Segment Consolidation 

Fig.11:  Mean Number of High-level Features Per 
Segment After Cross-Segment Consolidation 
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training.  If individual segments involve a wide variety of 
terrain types and obstacle, the learning systems will have 
difficulty with the data.  Complex, free play lessons are 
undesirable.  An ideal would be for a training lesson to 
have one type of good terrain and one type of obstacle or 
rough terrain:  advance, and then sharply turn away from 
the obstacle or rough terrain.  The turn away should be at 
a consistent distance.   
 
 General-purpose machine learning methods, such as 
artificial neural networks, decision trees, and multi-linear 
regression models do not have an inherent representation 
of 2-D or 3-D spatial relationships, or other structure to 
the input.  Each dimension of the feature vector is 
independent, as far as the representation is concerned.  If 
the feature vector actually represents a grid or retino-topic 
map or multi-resolution map, there is no way to represent 
this to the learning mechanism.  The patterns that we 
humans see in the input are in the context of the structure 
of the input representation.  General-purpose machine 
learning systems are at a relative disadvantage:  they have 
to infer a pattern without knowing the underlying 
grammar or geometry.  Converting a two dimensional 
image into a one dimensional vector before inputting it to 
a learning algorithm strips out important structuring 
information.  It is like stripping out all the spaces and 
punctuation marks from text before trying to learn a 
foreign language.  Research in machine learning methods 
with inherent geometrical structures is needed. 
 
 Our approach to learning to predict trafficability from 
appearance involved discriminating between those route 
segments that were self-explanatory from those that were 
inherently unpredictable.  For self-explanatory segments, 
when the segment was analyzed in isolation, clustering 
based on the appearance vector explained the variance in 
trafficability.  For inherently unpredictable segments it 
did not.  An important part of a practical robot 
intelligence system is the ability to discern when its 
predictions or decisions are reliable and when they are 
not, i.e., when its algorithms and data are applicable and 
when they are not.  A system that does not make this 
discrimination is at risk of making inappropriate decisions 
without knowing it. 
 
 Our research focused on automatically extracting 
high-level features associated with driving behaviors.  
The high-level features were defined in the framework of 
low-level feature vector.  In this research we used a 9 
dimensional feature vector, the standard deviation of 
elevation within a distance-by-azimuth grid cell.  The 
high-level features are contingent on the low-level feature 
vector.  Further research is needed into alternative or 
complementary low-level feature vectors for visual 
perception.  Other factors such as color or luminance 
variation could be incorporated.  Resolution effects need 
to be studied.  Retino-topic representations (i.e., in the 

original image plane) should be investigated.  
Incorporating complementary non-visual sensory data, 
e.g., pitch and roll angles, should also be explored.  The 
value and potential contribution of a learning system is 
for the system to automatically determine how to use and 
combine the disparate feature vector data. 
 
 Our approach relied on multi-stage clustering or 
learning methods.  It exploited the sequential nature of the 
input stream and the assumption of local self-similarity of 
the terrain.  It performed fast clustering using sub-
segmentation followed by consolidation with a route 
segment.  On this basis, it could determine whether or not 
the segment met the self-explanatory requirement.  For 
those segments that met the requirement, their high-level 
features were consolidated with the high-level features 
extracted from prior self-explanatory route segments.  
This produced fast assimilation of new lessons. 
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